Abstract: Forest Change Detection (FCD) is a critical component of natural resource monitoring and conservation strategies, enabling informed decision-making. Various methods utilizing the power of artificial intelligence (AI) have been developed for detecting and categorizing changes in forest cover using remote sensing (RS) data. One prominent AI-powered approach is the U-Net, a deep learning (DL) architecture famous for its segmentation proficiency. However, the standard U-Net architecture fails to effectively capture intricate spatial dependencies and long-range contextual information present in remote sensing imagery. To address this research gap, we introduce an attention-residual-based novel DL model which leverages the U-Net architecture and Sentinel-2 satellite images to map alterations in forest vegetation cover in the tropical region. Our novel model enhances the U-Net architecture by seamlessly integrating the strengths of the U-Net, harnessing attention mechanisms strategically to amplify crucial features, and leveraging cutting-edge residual connections to facilitate the smooth flow of information and gradient propagation. These meticulous design choices enabled the precise feature extraction, resulting in improved computational performance of the proposed method compared to the Standard U-Net, Deeplabv3+, Deep Res-U-Net, and Attention U-Net. The classification results demonstrate the enhanced efficiency of our model, achieving a Mean Intersection over Union (MIoU) of 0.9330 on our test dataset. This performance surpasses the Attention U-Net (0.9146), Standard U-Net (0.9029), Deeplabv3+ (0.9247), and Deep Res-U-Net (0.9282). The comparative analysis of ground truth reproductions unveiled the superior detection capabilities of our model in accurately identifying forest and non-forest polygons, surpassing both the standard U-Net, and the U-Net augmented with attention mechanism, along with other state-of-the-art techniques, thereby highlighting its enhanced efficacy. The model’s broad applicability can support forest managers and ecologists in rapidly evaluating the long-term ramifications of infrastructure initiatives, such as roads, on tropical forests, including those in Brunei.
International Journal of Technology (IJTech), 2024
Wasswa Shafik, Kassim Kalinaki, S. Mojtaba Matinkhah
SAGA: Journal of Technology and Information Systems, 2023
Mussa Saidi Abubakari, Gamal Abdul Nasir Zakaria, Juraidah Musa, Kassim Kalinaki
Canadian Journal of Educational and Social Studies, 2023
Mussa S Abubakari, Gamal Abdul Nasir Zakaria, Juraidah Musa, Kassim Kalinaki
Emerald, Higher Education, Skills and Work-Based Learning, 2023
Auf Tumwebaze Alicon, Kassim Kalinaki