The role of machine learning in improving power distribution systems resilience

Khairul Eahsun Fahim, Kassim Kalinaki, L.C. De Silva, Hayati Yassin

PDF DOI

Abstract: Lately, distribution systems have grown increasingly intricate and vulnerable to a wide range of disruptions, such as natural disasters, cyberattacks, and equipment failures. As a result, there is a growing need for methods that can improve the resilience of these systems and minimize their downtime. In the realm of cutting-edge technology, novel methods of artificial intelligence are coming to the forefront, with machine learning (ML) leading the pack and becoming increasingly applied in many sectors including the energy sector. These automated techniques can help enhance the resilience of distribution systems by providing real-time data analysis, predictive modeling, and automated decision-making capabilities. Accordingly, this chapter delves into the role played by different ML techniques in Revitalizing the tenacity of distribution networks. Specifically, it provides a comprehensive review of the existing studies on the application of ML in distribution systems’ resilience and provides several case studies to illustrate the practical applications of these robust methods aimed at minimizing the frequency of disruptions from both natural and man-made disasters. Additionally, this chapter details the challenges of deploying ML techniques for distribution systems resilience along with highlighting the future directions of research in this area that will address the challenges to fully leverage the potential of AI-powered approaches for improving distribution system resilience. This chapter will act as an insightful resource for different key stakeholders, researchers, and students with a vested interest in this area.


Related Publications.

Weily, Emerging Threats and Countermeasures in Cybersecurity, 2024

Muhammad Muzamil Aslam, Kassim Kalinaki, Ali Tufail, Abdul Ghani Haji Naim, Madiha Zahir Khan, Sajid Ali

PDF DOI

Taylor and Francis, Ransomware Evolution, 2024

Kassim Kalinaki

PDF DOI

Taylor and Francis, Artificial Intelligence Solutions for Cyber-Physical Systems, 2024

Adam A. Alli, Kassim Kalinaki, Mugigayi Fahadi, Lwembawo Ibrahim

PDF DOI

IET, Cybersecurity in Emerging Healthcare Systems, 2024

Rufai Yusuf Zakari, Kassim Kalinaki, Zaharaddeen Karami Lawal, Najib Abdulrazak

PDF DOI

Read all Publications >